若,则___________.
已知幂函数的图像过点,则此幂函数的解析式是________.
方程组的增广矩阵是__________________.
设函数定义域为,且.
设点是函数图像上的任意一点,过点分别作直线和轴的垂线,垂足分别为.
(1)写出的单调递减区间(不必证明);(4分)
(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;(7分)
(3)设为坐标原点,求四边形面积的最小值.(7分)
定义数列,(例如时,)满足,且当()时,.令.
(1)写出数列的所有可能的情况;(5分)
(2)设,求(用的代数式来表示);(5分)
(3)求的最大值.(6分)
某海域有、两个岛屿,岛在岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发现过鱼群。以、所在直线为轴,的垂直平分线为轴建立平面直角坐标系。
(1)求曲线的标准方程;(6分)
(2)某日,研究人员在、两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),、两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?(8分)