在四棱锥中,底面是直角梯形,∥,∠, ,平面⊥平面.
(1)求证:⊥平面;
(2)求平面和平面所成二面角(小于)的大小;
(3)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.
有甲,乙两个盒子,甲盒中装有2个小球,乙盒中装有3个小球,每次随机选取一个盒子并从中取出一个小球
(1)当甲盒中的球被取完时,求乙盒中恰剩下1个球的概率;
(2)当第一次取完一个盒子中的球时,另一个盒子恰剩下个球,求的分布列及期望。
已知函数,
(1)求函数的最小正周期; (2)若,求函数的值域
已知函数 ,函数,若存在,使得成立,则实数的取值范围是 。
设集合,,若,则实数取值范围是 。
已知抛物线的参数方程为(为参数),焦点为,准线为,为抛物线上一点,,为垂足,如果直线的斜率为,那么 。