过椭圆
的右焦点F2作倾斜角为
弦AB,则|AB︳为( )
A.
B.
C.
D.![]()
已知数列
,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( )

A.n
8 B.n
9 C.n
10 D.n
11
已知函数
的大致图象如图所示, 则函数
的解析式应为( )

A.
B.![]()
C.
D.![]()
已知
为两个命题,则“
是真命题”是 “
是真命题”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
(本题12分)
如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。

(Ⅰ)若∠PAB=30°,求以MN为直径的圆方程;
(Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。
(本题12分)
已知椭圆
的右焦点为F,上顶点为A,P为C
上任一点,MN是圆
的一条直径,若与AF平行且在y轴上的截距为
的直线
恰好与圆
相切.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)若
的最大值为49,求椭圆C
的方程.
