(本小题满分12分)
已知数列{ an}的前n项和为Sn,且Sn=2an-l;数列{bn}满足bn-1=bn=bnbn-1(n≥2,n∈N*)b1=1.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列的前n项和T.
(本小题满分12分)
某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第一组 [160,164],第二组[164,168],…,第6组[180,184],下图是按上述分组方法得到的频率分布直方图.
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这50名男生身高在172 cm以上(含172 cm)的人数;
(Ⅲ)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为,求的数学期望.
参考数据:
若.则
=0.6826,
="0.9544,"
=0.9974.
(本小题满分12分)
已知函数f(x)=" cos(" 2x+)+sin2x.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足
2·=, 求△ABC的面积S.
给出若干数字按下图所示排成倒三角形,其中第一行各数依次是l,2,3,…,2013,从第二行起每一个数都等于它“肩上”两个数之和,最后一行只有一个数M,则这个数M是 。
已知直线⊥平面,直线m平面,有下列命题:
①∥⊥m; ②⊥∥m;
③∥m⊥; ④⊥m∥.
其中正确命题的序号是 。
已知a=4,则二项式(x2+)5的展开式中x的系数为 .