(本题满分13分)设函数,且,,求证:(1)且;
(2)函数在区间内至少有一个零点;
(3)设是函数的两个零点,则.
(本题满分13分)某化工企业2012年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备年的年平均污水处理费用为(万元)。
(1)用表示;
(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备。
(本题满分12分)如图,在四棱锥中,底面为平行四边形,,,为中点,平面, ,
为中点.
(1)证明://平面;
(2)证明:平面;
(3)求直线与平面所成角的正切值.
(本题满分12分)已知向量,函数
(1)求函数的单调增区间;
(2)在中,分别是角A, B, C的对边,且,且
求的值.
(本题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,后得到如图的频率分布直方图.
(1)求图中实数的值;
(2)若该校高一年级共有学生640人,试估计该校高一年级
期中考试数学成绩不低于60分的人数;
(3)若从数学成绩在与两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.
传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研究过如图所示的三角形数:
|
将三角形数1,3,6,10,记为数列,将可被5整除的三角形数按从小到大的顺序组成一个新数列. 可以推测:
(Ⅰ)是数列中的第 项;
(Ⅱ)________(用k表示)