如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为,已知S的身高约为米(将眼睛距地面的距离按米处理)
(1) 求摄影者到立柱的水平距离和立柱的高度;
(2) 立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
已知曲线是动点到两个定点、距离之比为的点的轨迹。
(1)求曲线的方程;(2)求过点与曲线相切的直线方程。
已知正三棱锥ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为________.
设、分别为双曲线的左、右焦点,点在双曲线的右支上,且,到直线的距离等于双曲线的实轴长,该双曲线的渐近线方程为 .
焦点在直线3x-4y-12=0上的抛物线的标准方程是________.
若实数x,y满足则的最大值为 .