(本小题满分10分)已知,不等式的解集为
(1)求
(2)当时,证明:
(本题满分12分)设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:与轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值.
(本题满分12分)已知函数在点处取得极小值-4,使其导函数的的取值范围为(1,3)
(Ⅰ)求的解析式及的极大值;
(Ⅱ)当时,求的最大值。
(本题满分12分)已知二次函数的图像过点,且,
(Ⅰ)求的解析式;
(Ⅱ)若数列满足,且,求数列的通项公式;
(Ⅲ)记,数列的前项和,求证:。
(本题满分12分)在四棱锥中,平面,,,
.
(Ⅰ)证明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)设为棱上的点,满足异面直线与所成的角为,求的长.
(本题满分12分)已知函数.
(Ⅰ)若,求的最大值;
(Ⅱ)在中,若,,求的值.