(本题满分12分)如图,四棱锥中,底面是边长为4的正方形,是与的交点,平面,是侧棱的中点,异面直线和所成角的大小是60.
(Ⅰ)求证:直线平面;
(Ⅱ)求直线与平面所成角的正弦值.
(本小题满分12分)已知函数(),直线,是图象的任意两条对称轴,且的最小值为.
(I)求的表达式;
(Ⅱ)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数的图象,若关于的方程,在区间上有且只有一个实数解,求实数的取值范围.
(本小题满分12分)已知各项都不相等的等差数列的前6项和为60,且为和的等比中项.
( I ) 求数列的通项公式;
(II) 若数列满足,且,求数列的前项和.
(本小题满分12分)已知的角A、B、C所对的边分别是,设向量, ,
(Ⅰ)若∥,求证:为等腰三角形;
(Ⅱ)若⊥,边长,,求的面积.
对正整数n,设曲线在x=2处的切线与y轴交点的纵坐标为,则的前n项和是 .
已知直线与曲线相切,则a的值为_________.