已知三棱柱的侧棱垂直于底面,各顶点都在都在同一球面上,若,则此球的表面积等于
(本小题满分14分)已知动圆过定点,且与直线相切,椭圆的对称轴为坐标轴,一个焦点为,点在椭圆上.
(1)求动圆圆心的轨迹的方程及椭圆的方程;
(2)若动直线与轨迹在处的切线平行,且直线与椭圆交于两点,试求当面积取到最大值时直线的方程.
(本小题满分12分)已知函数,,,其中且.
(I)求函数的导函数的最小值;
(II)当时,求函数的单调区间及极值;
(III)若对任意的,函数满足,求实数的取值范围.
(本题满分12分)如图,四棱锥中,底面是边长为4的正方形,是与的交点,平面,是侧棱的中点,异面直线和所成角的大小是60.
(Ⅰ)求证:直线平面;
(Ⅱ)求直线与平面所成角的正弦值.
(本小题满分12分)已知函数(),直线,是图象的任意两条对称轴,且的最小值为.
(I)求的表达式;
(Ⅱ)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数的图象,若关于的方程,在区间上有且只有一个实数解,求实数的取值范围.
(本小题满分12分)已知各项都不相等的等差数列的前6项和为60,且为和的等比中项.
( I ) 求数列的通项公式;
(II) 若数列满足,且,求数列的前项和.