复数
A. B. C. D.
设集合,,则
A. B. C. D.
(本小题满分14分)已知函数,.
(Ⅰ)若,求函数的极值;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若在区间上不存在,使得成立,求实数的取值范围.
(本题满分13分) 如图,是离心率为的椭圆,
:()的左、右焦点,直线:将线段分成两段,其长度之比为1 : 3.设是上的两个动点,线段的中点在直线上,线段的中垂线与交于两点.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点,使以为直径的圆经过点,若存在,求出点坐标,若不存在,请说明理由.
(本题满分12分)已知是等比数列的前项和,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列是单调递减数列,求实数的取值范围.
(本题满分12分) 如图,平面⊥平面,其中为矩形,为梯形,∥,⊥,==2=2,为中点.
(Ⅰ) 证明;
(Ⅱ) 若二面角的平面角的余弦值为,求的长.