(本小题满分13分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线在轴上的截距m的取值范围;
(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
(本小题12分)已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前n项和.
(Ⅰ)求数列的通项公式和数列的前n项和;
(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围;
(本小题12分)在直三棱柱(侧棱垂直底面)中,,.
(Ⅰ)若异面直线与所成的角为,求棱柱的高;
(Ⅱ)设是的中点,与平面所成的角为,当棱柱的高变化时,求的最大值.
(本小题12分)已知等10所高校举行的自主招生考试,某同学参加每所高校的考试获得通过的概率均为.
(Ⅰ)如果该同学10所高校的考试都参加,试求恰有2所通过的概率;
(Ⅱ)假设该同学参加每所高校考试所需的费用均为元,该同学决定按顺序参加考试,一旦通过某所高校的考试,就不再参加其它高校的考试,试求该同学参加考试所需费用的分布列及数学期望.
(本小题12分)已知
(Ⅰ)若,求使函数为偶函数。
(Ⅱ)在(I)成立的条件下,求满足=1,∈[-π,π]的的集合。
已知椭圆方程为(),F(-c,0)和F(c,0)分别是椭圆的左 右焦点.
①若P是椭圆上的动点,延长到M,使=,则M的轨迹是圆;
②若P是椭圆上的动点,则;
③以焦点半径为直径的圆必与以长轴为直径的圆内切;
④若在椭圆上,则过的椭圆的切线方程是;
⑤点P为椭圆上任意一点,则椭圆的焦点角形的面积为.
以上说法中,正确的有