抛物线y=4x2的准线方程是 ( )
A.x=1 B. C.y=-1 D.
若直线的倾斜角为,则等于 ( )
A.0 B. C. D.不存在
(本小题14分)已知函数,设。
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值。
(Ⅲ)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说名理由。
(本小题满分13分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线在轴上的截距m的取值范围;
(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
(本小题12分)已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前n项和.
(Ⅰ)求数列的通项公式和数列的前n项和;
(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围;
(本小题12分)在直三棱柱(侧棱垂直底面)中,,.
(Ⅰ)若异面直线与所成的角为,求棱柱的高;
(Ⅱ)设是的中点,与平面所成的角为,当棱柱的高变化时,求的最大值.