(本小题满分12分)
已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率,过M的右焦点F作不与坐标轴垂直的直线,交M于A,B两点。
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且,求实数t的取值范围。
(本小题满分12分)
已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆和上,,求直线的方程.
.(本小题满分12分)
已知函数,是常数)在x=e处的切线方程为,既是函数的零点,又是它的极值点.
(1)求常数a,b,c的值;
(2)若函数在区间(1,3)内不是单调函数,求实数m的取值范围;
(3)求函数的单调递减区间,并证明:
(本小题满分14分)
已知函数为常数)是实数集上的奇函数,函数
在区间上是减函数.
(Ⅰ)求实数的值;
(Ⅱ)若在上恒成立,求实数的最大值;
(Ⅲ)若关于的方程有且只有一个实数根,求的值.
(本小题满分12分)
设点到直线的距离与它到定点的距离之比为,并记点的轨迹为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)设,过点的直线与曲线相交于两点,当线段的中点落在由四点构成的四边形内(包括边界)时,求直线斜率的取值范围.
(本题满分12分)
已知数列为公差不为的等差数列,为前项和,和的等差中项为,且.令数列的前项和为.
(Ⅰ)求及;
(Ⅱ)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.