(本小题满分14分)
如图4,在三棱柱中,△是边长为的等边三角形,
平面,,分别是,的中点.
(1)求证:∥平面;
(2)若为上的动点,当与平面所成最大角的正切值为时,
求平面 与平面所成二面角(锐角)的余弦值.
(本小题满分12分)
甲,乙,丙三位学生独立地解同一道题,甲做对的概率为,乙,丙做对的概率分别为, (>),且三位学生是否做对相互独立.记为这三位学生中做对该题的人数,其分布列为:
0 |
1 |
2 |
3 |
|
(1) 求至少有一位学生做对该题的概率;
(2) 求,的值;
(3) 求的数学期望.
(本小题满分12分)
已知函数(其中,,)的最大值为2,最小正周
期为.
(1)求函数的解析式;
(2)若函数图象上的两点的横坐标依次为,为坐标原点,求△ 的
面积.
(几何证明选讲选做题)
如图3,是的直径,是的切线,与交于点,若,,则的长为 .
(坐标系与参数方程选做题)
在极坐标系中,定点,点在直线上运动,当线段最短时,点的极坐标为 .
已知经过同一点的N个平面,任意三个平面不经过同一条直线.若这个平面将空间分成个部分,则 , .