复数的共轭复数是a + bi(a,bR),i是虛数单位,则点(a,b)为
A.(1,2) B.(2,-i) C.(2,1) D.(1,-2)
已知集合U={1,2,3,4,5,6},A={1,,4,5},B={2,3,4},则=
A.{4}, B.U={1,5}, C.U={1,5,6}, D.U={1,4,5,6}
(本小题满分14分)
已知二次函数,关于的不等式的解集为,其中为非零常数.设.
(1)求的值;
(2)R如何取值时,函数存在极值点,并求出极值点;
(3)若,且,求证:N
(本小题满分14分)
已知椭圆的中心在坐标原点,两个焦点分别为,,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.
(本小题满分14分)
已知数列的前项和为,且 N.
(1) 求数列的通项公式;
(2)若是三个互不相等的正整数,且成等差数列,试判断
是否成等比数列?并说明理由.
(本小题满分14分)
如图4,在三棱柱中,△是边长为的等边三角形,
平面,,分别是,的中点.
(1)求证:∥平面;
(2)若为上的动点,当与平面所成最大角的正切值为时,
求平面 与平面所成二面角(锐角)的余弦值.