(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系, 曲线C1的极坐标方程为:
(I)求曲线C1的普通方程;
(II)曲线C2的方程为,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值.
(本小题满分10分)选修4-1几何证明选讲
如图,AB是O的直径,BE为圆0的切线,点c为o 上不同于A、B的一点,AD为的平分线,且分别与BC 交于H,与O交于D,与BE交于E,连结BD、CD.
(I )求证:BD平分
(II)求证:AH.BH=AE.HC
(本题满分12分)已知分别为椭圆的左、右焦点,点在椭圆上,且
(1)求点的坐标;
(2)设点与点关于坐标原点对称,直线上有一点在的外接圆上,求的值
(本题满分12分)已知函数
(1)若的单调区间;
(2)若函数存在极值,且所有极值之和大于,求a的取值范围。
(本题满分12分)过点作直线与抛物线相交于两点,圆
(1)若抛物线在点处的切线恰好与圆相切,求直线的方程;
(2)过点分别作圆的切线,试求的取值范围.
.(本题满分12分) 如图,PA垂直于矩形ABCD所在的平面, ,E、F分别是AB、PD的中点.
(1)求证:平面PCE 平面PCD;
(2)求三棱锥P-EFC的体积.