椭圆:的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于两点,与抛物线交于两点,且。
(1)求椭圆的方程;
(2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足
为坐标原点),当时,求实数的取值范围。
(本小题满分14分)
在四棱锥中,//,, ,平面,.
(Ⅰ)设平面平面,求证://;
(Ⅱ)求证:平面;
(Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.
已知三个正整数按某种顺序排列成等差数列。
(1)求的值;
(2)若等差数列的首项、公差都为,等比数列的首项、公比也都为,前项和分别为,且,求满足条件的正整数的最大值。
在锐角中,分别是内角所对边长,且满足
。
求角的大小;
若,求
已知是锐角的外接圆的圆心,且,若,则=________ ______.
已知,则
_ _.