函数,则( )
A.0 B.1 C.2 D.3
设集合,则 ( )
A.{1,3} B.{2,4} C.{1,2,3,5} D.{2,5}
(本题14分)已知函数在处取得极值,且在处的切线的斜率为1。
(Ⅰ)求的值及的单调减区间;
(Ⅱ)设>0,>0,,求证:。
(本题15分)已知点是椭圆E:()上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,().求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.
(本题15分)如图,在四棱锥中,底面,, ,, ,是的中点。
(Ⅰ)证明:;
(Ⅱ)证明:平面;
(Ⅲ)求二面角的正切值.
(本题14分)口袋内有()个大小相同的球,其中有3个红球和个白球.已知从
口袋中随机取出一个球是红球的概率是,且。若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于。
(Ⅰ)求和;
(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求的分布列和期望。