定义:.若复数满足,则等于
A. B. C. D.
已知直线平面,直线,则“”是“”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
设集合,,若,则实数的值为
A. B. C. D.
已知平面向量,,且,则实数的值为
A. B. C. D.
已知是由满足下述条件的函数构成的集合:对任意,
① 方程有实数根;② 函数的导数满足.
(Ⅰ)判断函数是否是集合中的元素,并说明理由;
(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;
(Ⅲ)对任意,且,求证:对于定义域中任意的,,,当,且时,
已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.
(1)求椭圆的标准方程;
(2)已知过点的直线与椭圆交于,两点.
① 若直线垂直于轴,求的大小;
② 若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.