命题“”的否定是
A. B.
C. D.
已知全集,,,则等于
A. B. C. D.
已知函数在处取得极小值2.
(1)求函数的解析式;
(2)求函数的极值;
(3)设函数,若对于任意,总存在,使得,求实数的取值范围.
已知椭圆过点,且离心率.
(1)求椭圆的标准方程;
(2)是否存在过点的直线交椭圆于不同的两点M、N,且满足(其中点O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.
如图所示,在四棱锥中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若E,F分别为PC,BD的中点.
(1)求证:平面PAD;
(2)求证:平面PDC平面PAD;
(3)求四棱锥的体积.
设函数
(1)写出函数的最小正周期及单调递减区间;
(2)当时,函数的最大值与最小值的和为,求不等式的解集.