(本小题满分14分)
已知函数(…是自然对数的底数)的最小值为.
(Ⅰ)求实数的值;
(Ⅱ)已知且,试解关于的不等式 ;
(Ⅲ)已知且.若存在实数,使得对任意的,都有,试求的最大值.
(本小题满分12分)
如图,是以为直径的半圆上异于、的点,矩形所在的平面垂直于该半圆所在的平面,且.
(Ⅰ)求证:;
(Ⅱ)设平面与半圆弧的另一个交点为.
①试证:;
②若,求三棱锥的体积.
(本小题满分12分)
已知为坐标原点,对于函数,称向量为函数的伴随向量,同时称函数为向量的伴随函数.
(Ⅰ)设函数,试求的伴随向量的模;
(Ⅱ)记的伴随函数为,求使得关于的方程在内恒有两个不相等实数解的实数的取值范围.
(本小题满分12分)
如图,抛物线的顶点为坐标原点,焦点在轴上,准线与圆相切.
(Ⅰ)求抛物线的方程;
(Ⅱ)若点在抛物线上,且,求点的坐标.
(本小题满分12分)
为了解某社区家庭的月均用水量(单位:吨),现从该社区随机抽查户,获得每户某年的月均用水量,并制作了频率分布表和频率分布直方图(如图).
(Ⅰ)分别求出频率分布表中的值,并估计该社区家庭月均用水量不超过吨的频率;
(Ⅱ)设、、是户月均用水量为的居民代表,、是户月均用水量为的居民代表. 现从这五位居民代表中任选两人参加水价论证会,请列举出所有不同的选法,并求居民代表、至少有一人被选中的概率.
(本小题满分12分)
等差数列中,,.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列的前项和.