(本小题满分12分)
某大学高等数学老师上学期分别采用了两种不同的教学方式对甲、乙两个大一新生班进行教改试验(两个班人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名同学的上学期数学期末考试成绩,得到茎叶图如下:
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)从乙班这20名同学中随机抽取两名高等数学成绩不得低于85分的同学,求成绩为90分的同学被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
|
甲班 |
乙班 |
合计 |
优秀 |
|
|
|
不优秀 |
|
|
|
合计 |
|
|
|
下面临界值表仅供参考:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:其中)
(Ⅳ)从乙班高等数学成绩不低于85分的同学中抽取2人,成绩不低于90分的同学得奖金100元,否则得奖金50元,记为这2人所得的总奖金,求的分布列和数学期望。
(本小题满分10分)
在△ABC中,角A、B、C所对的边分别为a、b、c,=(,1),=(, )且.
求:(I)求sin A的值;(II)求三角函数式的取值范围.
下列命题中正确的是 .
①如果幂函数的图象不过原点,则m=1或m=2;
②定义域为R的函数一定可以表示成一个奇函数与一个偶函数的和;
③已知直线a、b、c两两异面,则与a、b、c同时相交的直线有无数条;
④方程=表示经过点A(2,3)、B(-3,1)的直线;
⑤方程-=1表示的曲线不可能是椭圆;
如图是一个算法的流程图,则输出的值是 .
(本小题满分12分) 已知直线L:y=x+1与曲线C:交于不同的两点A,B;O为坐标原点。
(1)若,试探究在曲线C上仅存在几个点到直线L的距离恰为?并说明理由;
(2)若,且a>b,,试求曲线C的离心率e的取值范围。
(本小题满分12分) 甲乙共同拥有一块形状为等腰三角形的地ABC,其中。如果画一条线使两块地面积相等,其中两端点P、Q分别在线段AB,AC上。
(1)如果建一条篱笆墙,如何划线建墙费用最低?
(2)如果在PQ线上种树,如何划线种树最多?