(本小题满分12分)已知四棱锥中平面,
且,底面为直角梯形,
分别是的中点.
(1)求证:// 平面;
(2)求截面与底面所成二面角的大小;
(3)求点到平面的距离.
(本小题12分)
某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
x |
6 |
8 |
10 |
12 |
y |
2 |
3 |
5 |
6 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)试根据(II)求出的线性回归方程,预测记忆力为9的同学的判断力。
(相关公式:)
(本小题满分12分)设数列满足且对一切,有
(1)求数列的通项;
(2)设 ,求的取值范围.
如图,在三棱锥中, 、、两两垂直, 且.设是底面内一点,定义,其中、、分别是三棱锥M-PAB、 三棱锥M-PBC、三棱锥M-PCA的体积.若,且恒成立,则正实数的最小值为___ ___.
①由“若”类比“若为三个向量,则”;②设圆与坐标轴的4个交点分别为A (x1,0)、B (x2,0)、C (0,y1)、D (0,y2),则;③在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;④在实数列中,已知a1 = 0,,则的最大值为2.上述四个推理中,得出的结论正确的是_____________(写出所有正确结论的序号).
在中,角A,B,C所对的边分别是a,b,c,若,且,则的面积等于 .