以坐标原点为极点,横轴的正半轴为极轴的极坐标系下,有曲线C:,过极点的直线
(且是参数)交曲线C于两点0,A,令OA的中点为M.
(1)求点M在此极坐标下的轨迹方程(极坐标形式).
(2)当时,求M点的直角坐标.
如图,的外接圆的切线与的延长线交于点,的平分线与交于点D.
(1)求证:
(2)若是的外接圆的直径,且,=1.求长.
已知函数。
(Ⅰ)设,讨论的单调性;
(Ⅱ)若对任意恒有,求的取值范围。
已知 是等差数列,是公比为的等比数列,,记为数列的前项和,
(1)若是大于的正整数,求证:;
(2)若是某一正整数,求证:是整数,且数列中每一项都是数列中的项;
(3)是否存在这样的正数,使等比数列中有三项成等差数列?若存在,写出一个的值,并加以说明;若不存在,请说明理由;
已知椭圆C1:,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点.
(Ⅰ)当AB⊥轴时,求、的值,并判断抛物线C2的焦点是否在直线AB上;
(Ⅱ)是否存在、的值,使抛物线C2的焦点恰在直线AB上?若存在,求出符合条件的、的值;若不存在,请说明理由.
已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.
(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.