(本小题满分10分)选修4-5:不等式选讲
已知函数.
(Ⅰ)当时,求函数的定义域;
(Ⅱ)若关于的不等式的解集是,求的取值范围.
已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合.
直线的参数方程为:(t为参数),曲线的极坐标方程为:.
(Ⅰ)写出的直角坐标方程,并指出是什么曲线;
(Ⅱ)设直线与曲线相交于、两点,求值.
已知函数
(Ⅰ)当时,求的单调区间;
(Ⅱ)若对任意, 恒成立,求实数的取值范围.
已知椭圆的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点且斜率为的直线与交于、两点,是点关于轴的对称点,证明:三点共线.
已知四棱锥的底面为菱形,且,
,为的中点.
(Ⅰ)求证:平面;
(Ⅱ)求点到面的距离.
是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国标准采用世卫组织设定的最宽限值,日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.
某试点城市环保局从该市市区2011年全年每天的监测数据中随机抽取6天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶),若从这6天的数据中随机抽出2天.
(Ⅰ)求恰有一天空气质量超标的概率;
(Ⅱ)求至多有一天空气质量超标的概率.