(本题满分10分) 已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程。
(本小题满分8分) 某车间生产某机器的两种配件A和B,生产配件A成本费y与该车间的工人人数x成反比,而生产配件B成本费y与该车间的工人人数x成正比,如果该车间的工人人数为10人时,这两项费用y和y分别为2万元和8万元,那么要使这两项费用之和最小,该车间的工人人数x应为多少?
(本题满分10分) 如图,P—ABCD是正四棱锥,是正方体,其中
(1)求证:;
(2)求平面PAD与平面所成的锐二面角的余弦值;
(本小题满分10分) 已知:等差数列,,前项和为.各项均为正数的等比数列列满足:,,且.
(1)求数列与的通项公式;
(Ⅱ)求
(本小题满分10分) 在中,角的对边分别为,且满足
(1)求角的大小;
(2)若为钝角三角形,求实数的取值范围。
曲线是平面内与两个定点和的距离的积等于常数的点的轨迹,给出下列三个结论:
①曲线过坐标原点;
②曲线关于坐标原点对称;
③若点在曲线上,则的面积不大于.
其中,所有正确结论的序号是____ _____