(本小题满分12分)设等比数列的公比为,前n项和。
(Ⅰ)求的取值范围;
(Ⅱ)设,记的前n项和为,试比较与的大小。
0且-1<<0或>0 当或时,即 当且≠0时,即 当或=2时,即. ……12分 考点:本小题主要考查等比数列前n项和公式的应用和作差法比较大小,考查学生对公式的应用和分类讨论思想的应用.
(本小题满分12分)右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为 已知,,,,
(Ⅰ)设点是的中点,证明:平面;
(Ⅱ)求二面角的大小;
(本小题满分12分)袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字,求:
(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量的分布列和数学期望;
(Ⅲ)计分介于20分到40分之间的概率
(本小题满分10分)在中,角A,B,C的对边分别是,已知向量,,且。
(Ⅰ)求角A的大小;
(Ⅱ)若,求面积的最大值。
如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥P-DCE的外接球的体积为 。
已知的展开式中第三项与第五项的系数之比为-,其中,则展开式中常数项是 。