若集合,,那么( )
A. B. C. D.
(本小题满分12分)已知椭圆上的任意一点到它的两个焦点, 的距离之和为,且其焦距为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同的两点A,B.问是否存在以A,B为直径
的圆 过椭圆的右焦点.若存在,求出的值;不存在,说明理由.
(本小题满分12分)设数列的前项和为.已知,,.
(Ⅰ)写出的值,并求数列的通项公式;
(Ⅱ)记为数列的前项和,求;
(Ⅲ)若数列满足,,求数列的通项公式。
已知函数f(x)=(x2+ax+2)ex,(x,a∈R).
(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;
(2)若函数y=f(x)为单调函数,求实数a的取值范围;
(3)当时,求函数f(x)的极小值.
(本题满分12分)在中,已知BC边上的高所在直线的方程为, 平分线所在直线的方程为,若点B的坐标为(1,2),
(Ⅰ)求直线BC的方程;
(Ⅱ)求点C的坐标。
如图,正三棱柱中,点是的中点.
(Ⅰ)求证: 平面;
(Ⅱ)求证:平面.