(本题满分16分) 本题共有3个小题,第1小题满分7分,第2小题满分7分,第3小题满分2分.
设直线交椭圆于两点,交直线于点.
(1)若为的中点,求证:;
(2)写出上述命题的逆命题并证明此逆命题为真;
(3)请你类比椭圆中(1)、(2)的结论,写出双曲线中类似性质的结论(不必证明).
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知,,满足.
(1)将表示为的函数,并求的最小正周期;
(2)已知分别为的三个内角对应的边长,若对所有恒成立,且,求的取值范围.
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知数列满足.
(1)设,证明:数列为等差数列,并求数列的通项公式;
(2)求数列的前项和.
(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求
(1)异面直线与所成角的大小(结果用反三角函数值表示);
(2)四棱锥的表面积.
已知函数是定义在上的单调增函数且为奇函数,数列是等差数列,,则的值( ).
A.恒为正数 B.恒为负数 C.恒为0 D.可正可负
已知复数在复平面上对应点为,则关于直线的对称点的复数表示是( ).
A. B. C. D.