用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个是偶数.用反证法证明时,下列假设正确的是( )
A.假设a、b、c都是偶数 B.假设a、b、c都不是偶数
C.假设a、b、c至多有一个偶数 D.假设a、b、c至多有两个偶数
若复数是虚数单位)是纯虚数,则实数a的值为( )
A.-3 B.3 C.-6 D.6
设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.
(1)求椭圆的离心率;
(2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;
(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于、两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.
动圆与定圆内切,与定圆外切,A点坐标为(1)求动圆的圆心的轨迹方程和离心率;(2)若轨迹上的两点满足,求的值.
已知椭圆的离心率为,其中左焦点(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
已知圆:,直线被圆所截得的弦的中点为P(5,3).(1)求直线的方程;(2)若直线:与圆相交于两个不同的点,求b的取值范围.