(本题满分12分)已知函数,
(1)若,求的单调区间;
(2)当时,求证:.
(本题满分12分)
已知椭圆的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,点P(0,1),且|PA|=|PB|,求直线的方程。
(本题满分12分)
已知函数,其图象在点(1,)处的切线方程为
(1)求a,b的值;
(2)求函数的单调区间,并求出在区间[—2,4]上的最大值。
(本题满分12分)
某校为了探索一种新的教学模式,进行了一项课题实验,乙班为实验班,甲班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,成绩如下表(总分:150分):
甲班
成绩 |
|||||
频数 |
4 |
20 |
15 |
10 |
1 |
乙班
成绩 |
|||||
频数 |
1 |
11 |
23 |
13 |
2 |
(1)现从甲班成绩位于内的试卷中抽取9份进行试卷分析,请问用什么抽样方法更合理,并写出最后的抽样结果;
(2)根据所给数据可估计在这次测试中,甲班的平均分是101.8,请你估计乙班的平均分,并计算两班平均分相差几分;
(3)完成下面2×2列联表,你认为在犯错误的概率不超过0.025的前提下, “这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由。
|
成绩小于100分 |
成绩不小于100分 |
合计 |
甲班 |
26 |
50 |
|
乙班 |
12 |
50 |
|
合计 |
36 |
64 |
100 |
附:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
18.
(本题满分12分)
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;
(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.
设n为正整数,f(n)=1+++…+,计算得f(2)=,f(4)>2,f(8)>,f(16)>3,观察上述结果,可推测一般的结论为_______________________________.