(本小题满分12分)
已知数列的前项和为满足:(为常数,且)
(1)若,求数列的通项公式
(2)设,若数列为等比数列,求的值.
(3)在满足条件(2)的情形下,设,数列前项和为,求证
(本小题满分12分)已知圆:和定点,由圆外一点向圆引切线,切点为,且满足.
(1)求实数间满足的等量关系式;
(2)求面积的最小值;
(3)求的最大值。
(本小题满分12分)
已知椭圆的离心率,过点和的直线与原点的距离为。⑴求椭圆的方程;⑵已知定点,若直线与椭圆交于两点,问:是否存在的值,使以为直径的圆过点?请说明理由。
(本小题满分12分)一个四棱锥的直观图和三视图如图所示:
(1)求证:⊥;
(2)求出这个几何体的体积。
(3)若在PC上有一点E,满足CE:EP=2:1,求证PA//平面BED。
(本题满分10分)已知直线与圆的交点为A、B,
(1)求弦长AB;
(2)求过A、B两点且面积最小的圆的方程.
如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p、q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列三个命题;
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个.
②若pq=0,且p+q≠0,则“距离坐标”为(p、q)的点有且仅有2个.
③若pq≠0,则“距离坐标”为(p、q)的点有且仅有4个.上述命题中,正确命题是 (填写序号)