已知圆的方程为.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( )
A.10 B.20 C.30 D.40
设是两条直线,是两个平面,则的一个充分条件是( )
A. B.
C. D.
(本题满分12分)
如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,
且,.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分)
已知数列的前项和为满足:(为常数,且)
(1)若,求数列的通项公式
(2)设,若数列为等比数列,求的值.
(3)在满足条件(2)的情形下,设,数列前项和为,求证
(本小题满分12分)已知圆:和定点,由圆外一点向圆引切线,切点为,且满足.
(1)求实数间满足的等量关系式;
(2)求面积的最小值;
(3)求的最大值。
(本小题满分12分)
已知椭圆的离心率,过点和的直线与原点的距离为。⑴求椭圆的方程;⑵已知定点,若直线与椭圆交于两点,问:是否存在的值,使以为直径的圆过点?请说明理由。