已知直角的三边长,满足
(1)在之间插入2011个数,使这2013个数构成以为首项的等差数列,且它们的和为,求的最小值;
(2)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;
(3)已知成等比数列,若数列满足,证明:数列中的任意连续三项为边长均可以构成直角三角形,且是正整数.
设函数
(1)当 ,画出函数的图像,并求出函数的零点;
(2)设,且对任意,恒成立,求实数的取值范围.
已知向量向量与向量的夹角为,且。
(1 )求向量 ;
(2)若向量与共线,向量,其中、为的内角,且、、依次成等差数列,求的取值范围.
本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.
如图,已知正四棱柱的底面边长是,体积是,分别是棱、的中点.
(1)求直线与平面所成的角(结果用反三角函数表示);
(2)求过的平面与该正四棱柱所截得的多面体的体积.
已知以为周期的函数,其中。若方程恰有5个实数解,则的取值范围为 ( )
A. B. C. D..
已知则与的夹角为 ( )
A. B. C. D.