已知数列满足,
(1)证明:数列是等比数列,并求出的通项公式
(2)设数列的前n项和为,且对任意,有成
立,求
如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=
(1)求证:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值
张师傅驾车从公司开往火车站,途径4个公交站,这四个公交站将公司到火车站
分成5个路段,每个路段的驾车时间都是3分钟,如果遇到红灯要停留1分钟,假设他在各
交通岗是否遇到红灯是相互独立的,并且概率都是
(1)求张师傅此行时间不少于16分钟的概率
(2)记张师傅此行所需时间为Y分钟,求Y的分布列和均值
已知向量,函数·
(1)求函数的最小正周期T及单调减区间
(2)已知分别是△ABC内角A,B,C的对边,其中A为锐角,且
,求A,b和△ABC的面积S
若不等式对任意都成立,则实数a取值范围是 。
已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.