(本小题满分13分)
已知椭圆的离心率,且短半轴为其左右焦点,是椭圆上动点.
(Ⅰ)求椭圆方程;
(Ⅱ)当时,求面积;
(Ⅲ)求取值范围.
(本小题满分13分).
(Ⅰ)求的单调区间;
(Ⅱ)若的图像不存在与平行或重合的切线,求实数的取值范围.
(本小题满分13分)
某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答下列问题:
(Ⅰ)求全班人数及分数在之间的频数;
(Ⅱ)不看茎叶图中的具体分数,仅根据频率分布直方图估计该班的平均分数;
(Ⅲ)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.
设函数,其中.
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若不等式的解集为 ,求的值.
在直角坐标系中,曲线的参数方程为 (为参数) 是上的动点,点满足,点的轨迹为曲线.
(1)求的方程;
(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.
如图,直线过圆心,交⊙于,直线交⊙于(不与重合),直线与⊙相切于,交于,且与垂直,垂足为,连结.
求证:(1);
(2).