(本小题13分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.
(Ⅰ)求抛物线的方程;
(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;
(本小题13分)已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆和上,,求直线的方程.
动圆M过定点A(-,0),且与定圆A´:(x-)2+y2=12相切.
(1)求动圆圆心M的轨迹C的方程;
(2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求的取值范围.
已知圆,直线.
(Ⅰ)若与相切,求的值;
(Ⅱ)是否存在值,使得与相交于两点,且(其中为坐标原点),若存在,求出,若不存在,请说明理由.
数列的前项和记为
(Ⅰ)求的通项公式;
(Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求
已知等差数列满足:,,的前n项和为.
(Ⅰ)求及;
(Ⅱ)令bn=(nN*),求数列的前n项和.