(本小题满分14分)
已知函数![]()
(1)求
的单调区间;
(2)若
在
内恒成立,求实数a的取值范围;
(3)
,求证:![]()
(本小题满分12分)
已知椭圆![]()
的离心率为
,定点
,椭圆短轴的端点是
,
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过点
且斜率不为
的直线交椭圆
于
,
两点.试问
轴上是否存在定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.
(本小题满分12分)
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:
.已知甲、乙两地相距100千米。
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
(本小题满分12分)
如图,在三棱锥
中,
,
,
,
,
, 点
,
分别在棱
上,且
,

(Ⅰ)求证:
平面PAC
(Ⅱ)当
为
的中点时,求
与平面
所成的角的正弦值;
(Ⅲ)是否存在点
使得二面角
为直二面角?并说明理由.
(本题满分12分)
等差数列
的各项均为正数,
,前
项和为
,
为等比数列,
,且
.
(1)求
与
;
(2)求数列
的前
项和
。
(本小题满分12分)
在
中,a,b,c分别是角A,B,C的对边,已知![]()
(1)求
的大小;
(2)设
且
的最小正周期为
,求
的最大值。
