已知复数
在复平面内对应的点分别为
,则![]()
A.
B.![]()
C.
D.![]()
(满分10分)
如下图,AB、CD是圆的两条平行弦,BE//AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.

(I)求AC的长;
(II)求证:BE=EF.
(满分12分)设函数
.
(Ⅰ)求函数
的单调递增区间;
(II)若关于
的方程
在区间
内恰有两个相异的实根,求实数
的取值范围.
(满分12分)已知椭圆![]()
的一个顶点为B
,离心率![]()
,
直线l交椭圆于M、N两点.
(Ⅰ)求椭圆的标准方程;
(II)如果ΔBMN的重心恰好为椭圆的右焦点F,求直线
的方程.
(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。

(Ⅰ)求证:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
(满分12分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.

(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;
(II)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
