如图,在等边△ABC中,P是边AC上一点,连接BP,将△BCP绕点B逆时针旋转60°,得到△BAQ,连接PQ.若BC=8,BP=7,则△APQ的周长是 .
如图,⊙O的半径为5,弦AB⊥CD于点E,且AB=CD=8,则OE的长为 .
已知当时,的值为3,则当时,的值为 .
设函数,的两个极值点为,线段的中点为.
(1) 如果函数为奇函数,求实数的值;当时,求函数图象的对称中心;
(2) 如果点在第四象限,求实数的范围;
(3) 证明:点也在函数的图象上,且为函数图象的对称中心.
设函数
(1)设,,证明:在区间内存在唯一的零点;
(2)设为偶数,,,求的最小值和最大值;
(3)设,若对任意,有,求的取值范围;
如图,在半径为、圆心角为的扇形金属材料中剪出一个长方形,并且与的平分线平行,设.
(1)试写出用表示长方形的面积的函数;
(2)在余下的边角料中在剪出两个圆(如图所示),试问当矩形的面积最大时,能否由这个矩形和两个圆组成一个有上下底面的圆柱?如果可能,求出此时圆柱的体积.