已知展开式的各项依次记为.
设.
(1)若的系数依次成等差数列,求的值;
(2)求证:对任意,恒有.
在极坐标系中,求曲线与的交点的极坐标.
已知矩阵,向量.求向量,使得.
已知函数.
(1)若函数在区间上有极值,求实数的取值范围;
(2)若关于的方程有实数解,求实数的取值范围;
(3)当,时,求证:.
已知圆:交轴于两点,曲线是以为长轴,直线:为准线的椭圆.
(1)求椭圆的标准方程;
(2)若是直线上的任意一点,以为直径的圆与圆相交于两点,求证:直线必过定点,并求出点的坐标;
(3)如图所示,若直线与椭圆交于两点,且,试求此时弦的长.
设数列的前n项和为,且满足,n=1,2,3,…….
(1)求数列的通项公式;
(2)若数列满足,且,求数列的通项公式;
(3)设,求数列的前n项和.