已知椭圆的中心在坐标原点,两个焦点分别为,,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.
如图,正三棱柱中,侧面是边长为2的正方形,是的中点,在棱上.
(1)当时,求三棱锥的体积.
(2)当点使得最小时,判断直线与是否垂直,并证明结论.
已知集合,,.从集合中各取一个元素分别记为,设方程为.
(1)求方程表示焦点在轴上的双曲线的概率.
(2)求方程不表示椭圆也不表示双曲线的概率.
已知是单调递增的等差数列,首项,前项和为,数列是等比数列,首项
(1)求和的通项公式.
(2)设,数列的前项和为,求证:.
已知函数(其中,,)的最大值为2,最小正周期为.
(1)求函数的解析式;
(2)若函数图象上的两点的横坐标依次为,为坐标原点,求的值.
执行如下图所示的程序框图,若输出的结果是8,则判断框内的取值范围是