设函数f(x)=的最大值为M,最小值为N,那么M+N= _________ .
从平面区域G={(a,b)|0≤a≤1,0≤b≤1}内随机取一点(a,b),则使得关于x的方程x2+2bx+a2=0有实根的概率是 _________ .
已知函数.(1)求函数的单调区间;
(2)设函数.若至少存在一个,使得成立,求实数的取值范围.
已知椭圆的中心在坐标原点,两个焦点分别为,,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.
如图,正三棱柱中,侧面是边长为2的正方形,是的中点,在棱上.
(1)当时,求三棱锥的体积.
(2)当点使得最小时,判断直线与是否垂直,并证明结论.
已知集合,,.从集合中各取一个元素分别记为,设方程为.
(1)求方程表示焦点在轴上的双曲线的概率.
(2)求方程不表示椭圆也不表示双曲线的概率.