已知.
(Ⅰ)判断曲线在的切线能否与曲线相切?并说明理由;
(Ⅱ)若求的最大值;
(Ⅲ)若,求证:.
已知圆O:,直线l:与椭圆C:相交于P、Q两点,O为原点.
(Ⅰ)若直线l过椭圆C的左焦点,且与圆O交于A、B两点,且,求直线l的方程;
(Ⅱ)如图,若重心恰好在圆上,求m的取值范围.
如图,在直角梯形ABCD中,,,且,E、F分别为线段CD、AB上的点,且.将梯形沿EF折起,使得平面平面BCEF,折后BD与平面ADEF所成角正切值为.
(Ⅰ)求证:平面BDE;
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.
一个口袋中有红球3个,白球4个.
(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;
(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).
在中,分别为内角对边,且.
(Ⅰ)求;
(Ⅱ)若,,求的值.
已知抛物线C:的焦点为F,准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点,若,则的值 .