已知,是两个向量集合,则
A.{〔1,1〕} B.{〔-1,1〕} C.{〔1,0〕} D.{〔0,1〕}
若,其中、,是虚数单位,则
A.0 B.2 C. D.5
选修4—1:几何证明选讲
如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD//AP,AD、BC相交于 E点,F为CE上一点,且
(1)求证:A、P、D、F四点共圆;
(2)若AE·ED=24,DE=EB=4,求PA的长。
已知,函数
(1)求的极小值;
(2)若在上为单调增函数,求的取值范围;
(3)设,若在(是自然对数的底数)上至少存在一个,使得成立,求的取值范围.
设椭圆的左、右焦点分别为,上顶点为,离心率为 , 在轴负半轴上有一点,且
(1)若过三点的圆 恰好与直线相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.
设数列的前项和为,且满足
(1)求数列的通项公式;
(2)在数列的每两项之间都按照如下规则插入一些数后,构成新数列,在两项之间插入个数,使这个数构成等差数列,求的值;
(3)对于(2)中的数列,若,并求(用表示).