设函数有两个极值点,且.
(1)求实数的取值范围;
(2)讨论函数的单调性;
(3)若对任意的,都有成立,求实数的取值范围.
已知椭圆:的离心率为,过右焦点且斜率为的直线交椭圆于两点,为弦的中点,为坐标原点.
(1)求直线的斜率;
(2)求证:对于椭圆上的任意一点,都存在,使得成立.
已知函数
(Ⅰ)求在点处的切线方程;
(Ⅱ)若存在,满足成立,求的取值范围;
(Ⅲ)当时,恒成立,求的取值范围.
设椭圆C: 过点, 且离心率.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过右焦点的动直线交椭圆于点,设椭圆的左顶点为连接且交动直线于,若以MN为直径的圆恒过右焦点F,求的值.
2011年4月28日世界园艺博览会将在陕西西安浐灞生态区举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识。志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答。知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减。答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用。
假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是,且各题回答正确与否相互之间没有影响.
(Ⅰ) 用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期望;
(Ⅱ)求志愿者甲能被录用的概率.
如图,在四边形中,对角线于,,为的重心,过点的直线分别交于且‖,沿将折起,沿将折起,正好重合于.
(Ⅰ) 求证:平面平面;
(Ⅱ)求平面与平面夹角的大小.