已知四棱柱的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,,
E是侧棱AA1的中点,求
(1)求异面直线与B1E所成角的大小;
(2)求四面体的体积.
如右图已知每条棱长都为3的四棱柱ABCD-ABCD中,底面是菱形,BAD=60°,D B⊥平面ABCD,长为2的线段MN的一个端点M在DD上运动,另一个端点N在底面ABCD上运动,则MN中点P的轨迹与此四棱柱的面所围成的几何体的体积为 _____________
设OA是球O的半径,M是OA的中点,过M且与OA成角的平面截球O的表面得到圆C。若圆C的面积等于,则球O的表面积等于
正方体的棱线长为1,线段上有两个动点E,F,且,则三棱锥的体积为
已知六棱锥的底面是正六边形,,则直线所成的角为
正四面体ABCD(六条棱长都相等)的棱长为1,棱AB∥平面,则正四面体上的所有点在平面内的射影构成的图形面积的取值范围是( )
A. B. C. D.