函数在闭区间内的平均变化率为
A. B. C. D.
(本小题满分16分)
如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面切于点.
(1)求证:PD⊥平面;
(2)求直线与平面所成的角的正弦值;
(3)求点到平面的距离.
(本题满分12分)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
(本题满分12分)如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求的长; (2)求cos< >的值; (3)求证:A1B⊥C1M.
(本小题满分12分)
(1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2)已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程.
(本小题满分12分)设直线与直线交于点.
(1)当直线过点,且与直线垂直时,求直线的方程;
(2)当直线过点,且坐标原点到直线的距离为时,求直线的方程.