已知数列{}满足,且
(1)求证:数列{}是等差数列;
(2)求数列{}的通项公式;
(3)设数列{}的前项之和,求证:.
第届亚运会于年月 日至日在中国广州进行,为了做好接待工作,组委会招募了 名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下列联表:
|
喜爱运动 |
不喜爱运动 |
总计 |
男 |
10 |
|
16 |
女 |
6 |
|
14 |
总计 |
|
|
30 |
(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有 人会外语),抽取名负责翻译工作,则抽出的志愿者中人都能胜任翻译工作的概率是多少?
附:K2=
P(K2≥k) |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
已知、、为的三个内角,且其对边分别为、、,若.
(1)求;
(2)若,求的面积.
观察下列三角形数表:
第六行的最大的数字是 ;设第行的第二个数为的通项公式是 .
如右图所示,执行程序框图,若输入N=99,则输出的_________.
若数列,是等差数列,则数列= 也是等差数列,类比上述性质,若数列是等比数列,且, ,则 ____________也是等比数列.