(满分13分)某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成。已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米。
(1)若设休闲区的长米,求公园ABCD所占面积S关于的函数的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
(满分13分)设正项等比数列的前项和为, 已知,.
(1)求首项和公比的值;(2)试证明数列为等差数列.
.(满分12分)已知:,当时, ;时,
(1)求的解析式
(2)c为何值时,的解集为R.
(满分12分)在中,在中,已知,,其面积为,
求的值。
(满分12分)写出命题:“已知a,x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆命题,否命题,逆否命题并判断其真假。
若数列{an}满足=p(p为正常数,n∈N+),则称{an}为“等方比数列”.
甲:数列{an}是等方比数列;乙:数列{an}是等比数列,则甲是乙的 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”选择一个填入)